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Background: Sharpness-Aware Minimization

[1] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for efficiently improving generalization.

Sharpness-Aware Minimization (SAM) [1]
The central idea is to minimize the worst-case loss within a neighborhood of current 
weights, i.e., 

min
𝜽

ℒ𝑆
SAM 𝜽; 𝜌 , where ℒ𝑆

SAM 𝜽; 𝜌 = max
𝜖

2
≤𝜌
ℒ𝑆(𝜽 + 𝝐). ∗

However, finding 𝝐 can be computationally intractable in practice. Thus Foret et al. [1] 
used first-order approximation, i.e., 

𝝐 ≈ arg max
𝝐

2
≤𝜌

ℒ𝑆 𝜽 + 𝝐⊤∇ℒ𝑆 𝜽 = 𝜌∇ℒ𝑆 𝜽 / ∇ℒ𝑆 𝜽
𝟐
.

Consequently, the update rule of SAM with stochastic gradient is, 

𝜽𝑡+1 = 𝜽𝑡 − 𝜂∇ℒ𝜉𝑡 𝜽 + 𝜌∇ℒ𝜉𝑡 𝜽 / ∇ℒ𝜉𝑡 𝜽 𝟐
.∗

*ℒ𝑆 𝜽 denotes the total loss over the training set.

*ℒ𝜉𝑡 𝜽 denotes the loss over a randomly sampled mini-batch 𝜉𝑡 at iteration 𝑡. 𝜂 denotes the learning rate.



Background: Implicit Bias

[2] Gal Vardi. On the implicit bias in deep-learning algorithms.

The effectiveness of gradient-based optimization methods can be attributed to 
their implicit bias toward solutions with favorable properties [2].

Implicit Bias of SGD

• SGD and its variants tends to find flat minima, which often generalize well.

Implicit Bias of SAM

• SAM tends to find flatter minima over SGD, which represents a form of implicit bias*.

Understanding the mechanism behind the implicit bias of SAM towards flatter minima is 

crucial to explain its effectiveness.

*Though SAM is inspired from sharpness regularization, its practical implementation, which minimizes a first-order approximation of the original objective, doesn’t 
explicitly achieve this.
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Fig. 1: Illustration of the switching method. 
Blue dashed lines represent SGD training, while 

orange dashed lines represent SAM training.
𝑡1, 𝑡2 denotes two switching points.

Fig. 2: SAM operates efficiently late in training. 
Blue line represents 𝜽SGD

𝑇 , while orange lines 
represents 𝜽SAM

𝑇 . Orange line represents 
𝜽SGD→SAM,𝑡
𝑇 , where 𝑡 = 175.

SAM Selects Flatter Minima Late In Training



Fig. 3: Few epochs of SAM substantially improves generalization/sharpness. 
We vary 𝑡 while keep 𝑇 fixed to adjust the SAM training proportion of 𝜽SGD→SAM,𝑡

𝑇 .

SAM training proportion when obtaining 𝜽SGD→SAM,𝑡
𝑇 : 

𝑇−𝑡

𝑇

WideResNet-28-10 on CIFAR-100 WideResNet-16-8 on CIFAR-10
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A Two-Phase Picture

We identify a two-phase picture in training dynamics after switching to SAM in the late 

training phase. This two-phase picture is characterized into four key claims (P1-4), as 

outlined in Tab. 1.

Phase I.
(Escape)

(P1). SAM rapidly escapes from the minimum found by SGD;
(P2). However, the iterator remains within the current valley.

Theorem 4.2
Proposition 4.1

Phase II.
(Converge)

(P3). SAM converges to a flatter minimum compared to SGD;
(P4). The convergence rate of SAM is extremely fast. 

Theorem 4.1
Theorem 4.3

Tab. 1: Overview of the two-phase picture and corresponding theoretical results.
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To understand the two-phase picture, let us first use a toy but representative example.
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𝑣

𝑢

Toy model on 
1

2
tanh2 𝑣 tanh 𝑢𝑥Example 4.1.

Consider using the shallow neural network 

𝑓 𝑢, 𝑣; 𝑥 = 𝑡𝑎𝑛ℎ 𝑣 𝑡𝑎𝑛ℎ 𝑢𝑥 to fit a single 

data 𝑥 = 1, 𝑦 = 0 under the squared loss 

ℓ 𝑦; 𝑦′ = 𝑦 − 𝑦′ 2/2, then the loss 
landscape is ℒ 𝑢, 𝑣 =

1

2
𝑡𝑎𝑛ℎ2(𝑣 𝑡𝑎𝑛ℎ(𝑢)) .

Note: If dynamics occurs around the set of 

global minima ℳ = 𝑢, 𝑣 𝑣 = 0}, then 

small 𝑢 implies flatter minima*.

Fig. 4: Visualization of the two-phase dynamics for 
Example 4.1. The horizontal gray line represents ℳ. 
Blue lines trace SGD, while orange lines show SAM.



Theoretical Support for P1 and P3: A Linear Stability Analysis [3].

Theorem 4.1 (P3)

Let 𝜽∗ be a global minimum that is linearly stable for SAM and suppose Assumption 4.1 
(see main paper) holds, then we have 𝐻 𝜽∗

𝐹

2
1 +

𝜌2𝛾

𝐵
𝐻 𝜽∗

𝐹

2
≤

𝐵

𝜂2𝛾
.

Theorem 4.1 characterizes the sharpness of the global minima selected by SAM. In Tab. 2, 

SAM probably selects flatter minima than SGD (P3).
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*𝐵 denotes the mini-batch size, and 𝛾 ≥ 0 is a constant defined in Assumption 4.1. 

SAM (Theorem 4.1) SGD [3]

Sharpness 
Bound

𝐻 𝜽∗
𝐹

2
1 +

𝜌2𝛾

𝐵
𝐻 𝜽∗

𝐹

2
≤

𝐵

𝜂2𝛾
𝐻 𝜽∗

𝐹

2
≤

𝐵

𝜂2𝛾

[3] Lei Wu, Mingze Wang, and Weijie Su. The alignment property of SGD noise and how it helps select flat minima: A stability analysis..

Tab. 2: Comparison of the sharpness of global minima selected by SAM and SGD.



Theorem 4.2 (P1)

Let 𝜽∗ be a global minimum that is linearly stable for SAM and suppose Assumption 4.1 
(see main paper) holds. If 𝐻 𝜽∗

𝐹

2
1 +

𝜌2𝛾

𝐵
𝐻 𝜽∗

𝐹

2
>

𝐵

𝜂2𝛾
, then 𝜽∗ is linearly non-

stable for SAM and 𝔼 ℒ 𝜽𝑡 ≥ 𝐶𝑡𝔼 ℒ 𝜽0 holds for all 𝑡 > 0 with 𝐶 > 1.
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Theorem 4.2 characterizes the necessary 

condition of a linearly stable minimum 

for SAM. As SGD minimum cannot meet 

the stability condition of SAM, SAM will 

escape from the minimum found by 

SGD exponentially fast (P1).

Step 𝑡

ℒ
𝐷
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→
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𝐴
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,𝑇

𝑇
+
𝑡

Fig. 5: The exponentially fast escape from minima 

found by SGD. Train loss ℒ𝐷train 𝜽SGD→SAM,𝑇
𝑇+𝑡  vs. step 𝑡 . 



ℒ
𝜽
𝜆

𝜆

Theoretical Support for P2: Beyond Local Analysis [4].

Proposition 4.1 (P2)

Under Definition 4.2 (see main paper), assume the landscape is sub-quadratic in the valley 
𝑉 = −2𝑏, 2𝑏 . Then, ∀ 𝜂, 𝜌 𝑠. 𝑡. 𝜂 < min

𝑧∈𝑉
𝑏/|ℒ′(𝑧)| , 𝜌 ≤ min{

1

𝑎
, 𝜂 min

0< 𝑧 <𝑏
|ℒ′ 2𝑧 /ℒ′(𝑧)|}, and 

𝜃0 ∈ (−𝑏, 𝑏), the full-batch SAM will remain within 𝑉, i.e., 𝜃𝑡 ∈ 𝑉, ∀𝑡 ∈ ℕ.

Proposition 4.1 supports our key claim P2 that SAM remains within the current valley during escape.
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[4] Chao Ma, Daniel Kunin, Lei Wu, and Lexing Ying. Beyond the quadratic approximation: the multiscale structure of neural network loss landscapes..

Fig. 6: SAM converges to a flatter minimum within 
the same valley as the one found by SGD. The loss of 

the interpolated model ℒ𝐷 𝜽𝜆  vs. interpolation 

coefficient 𝜆. Here, 𝜽𝜆 = 1 − 𝜆 𝜽SGD→SAM
end + 𝜆𝜽SGD

end .



Theoretical Support for P4: Convergence Analysis.

Theorem 4.3 (P4)

Under Assumption 4.2 and 4.3 (main paper), let 𝜽𝑡 𝑡 be the weights found by SAM. If 𝜂 ≤

min{
1

𝐿
,
𝜇𝐵

2𝐿𝜎2
} and 𝜌 ≤ min

1

𝐿
,
𝜇𝐵

4𝐿𝜎2
,
𝜂𝜇2

24𝐿2
, then we have 𝔼 ℒ 𝜽𝑡 ≤ 1 −

𝜂𝜇

2

𝑡
ℒ 𝜽0 , ∀𝑡 ∈ ℕ.

Theorem 4.3 supports our key claim P4 that the convergence rate of stochastic 

SAM is significantly fast, and notably faster than the previous result on SAM’s 

convergence rate [5].
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5] Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware minimization..



Fig. 7: Early-phase SAM marginally improves generalization/sharpness. We 
vary 𝑡 while keep 𝑇 fixed to adjust the SAM training proportion of 𝜽SAM→SGD,𝑡

𝑇 .

SAM training proportion when obtaining 𝜽SAM→SGD,𝑡
𝑇 : 

𝑡

𝑇

WideResNet-28-10 on CIFAR-100 WideResNet-16-8 on CIFAR-10
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Is SAM Still Necessary in Early Phase?

ℒ𝐷test 𝜽SAM→SGD,𝑡
𝑇 − ℒ𝐷test 𝜽SAM

𝑇             Err𝐷test 𝜽SAM→SGD,𝑡
𝑇 − Err𝐷test 𝜽SAM,t

𝑇 ||𝐻 𝜽SAM→SGD,𝑡
𝑇 ||2



Fig. 8: AT improves robustness efficiently even when applied only during the final few 
epochs of training. (a) Robust/natural error vs. training epochs for model trained with 

different strategies. (b) Robust/natural error of 𝜽SGD→AT,𝑡
𝑇 vs. the proportion of AT epochs 

𝑇−𝑡

𝑇
.
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Extend Findings to Adversarial Training

WideResNet-16-8 on CIFAR-10 with Adversarial Training

AT training proportion when obtaining 𝜽SGD→AT,𝑡
𝑇 : 
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Thank you!
Q&A
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